An Optimization-Based Methodology to Predict Digital Human Gait Motion

نویسندگان

  • Hyung Joo Kim
  • Emily Horn
  • Jasbir S. Arora
  • Karim Abdel- Malek
چکیده

New methods for fast, adaptive motion prediction of a virtual human are proposed and tested. An optimal locomotion for gait-driven motions like pushing, climbing and pick-up/delivery are sought through gradient-based optimization and inverse-dynamics. Such gait-driven motion can be produced by adapting the normal gait motion to the case when a characteristic force is applied, which is called an applied force. The applied force is a resistance force for pushing case and an object weight for delivery case. The concept of the zero moment point is modified to assess the dynamic equilibrium of the motion in presence of the applied force. For fast calculation, analytical forms of the cost/constraint gradients are provided. Stepping patterns are specified a priori to ensure the continuity of the cost/constraint function gradients. Also, by varying knots for the B-spline curve approximation, the gait stage durations are optimized.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alternative Formulations for Optimization-Based Human Gait Planning

Simulating human motion is a complex problem due to redundancy of the human musculoskeletal system. The concept of task-based dynamic motion prediction using singleor multi-objective optimization techniques provides a viable approach for predicting dynamic gait motions of digital humans, subjected to basic physical and kinematical constraints. The task-based motion prediction is in fact a numer...

متن کامل

Ant Colony Optimization for Multi-objective Digital Convergent Product Network

Convergent product is an assembly shape concept integrating functions and sub-functions to form a final product. To conceptualize the convergent product problem, a web-based network is considered in which a collection of base functions and sub-functions configure the nodes and each arc in the network is considered to be a link between two nodes. The aim is to find an optimal tree of functionali...

متن کامل

Stable Gait Planning and Robustness Analysis of a Biped Robot with One Degree of Underactuation

In this paper, stability analysis of walking gaits and robustness analysis are developed for a five-link and four-actuator biped robot. Stability conditions are derived by studying unactuated dynamics and using the Poincaré map associated with periodic walking gaits. A stable gait is designed by an optimization process satisfying physical constraints and stability conditions. Also, considering...

متن کامل

Physics-Based Models for Human Gait Analysis

This chapter deals with fundamental methods as well as current research on physics-based human gait analysis. We present valuable concepts that allow efficient modeling of the kinematics and the dynamics of the human body. The resulting physical model can be included in an optimization-based framework. In this context, we show how forward dynamics optimization can be used to determine the produ...

متن کامل

Dynamics modeling and stable gait planning of a quadruped robot in walking over uneven terrains

Quadruped robots have unique capabilities for motion over uneven natural environments. This article presents a stable gait for a quadruped robot in such motions and discusses the inverse-dynamics control scheme to follow the planned gait. First, an explicit dynamics model will be developed using a novel constraint elimination method for an 18-DOF quadruped robot. Thereafter, an inverse-dynamics...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005